Teléfono: +86-18516712251 Correo electrónico: info@niumag.com

Acerca de Contacto Consigue una cotización |

AplicacionesNúcleo de roca & Medios porosos

Estudio de RMN de campo bajo sobre el efecto de las fracturas en la recuperación de rocas de baja permeabilidad

Estudio de RMN de campo bajo sobre el efecto de las fracturas en la recuperación de rocas de baja permeabilidad

Hydraulic fracturing technology can improve crude oil production in tight formations, and the impact of fractures on rock pore recovery is the focus of research. Rock pore structure changes during fracturing, especially lab-made fractures, affecting the mass transfer between matrix pores and fractures. Estos cambios deben tenerse en cuenta para evaluar con precisión el impacto de las fracturas en la migración del fluido de los poros.; directly compare samples The results before and after fracturing can lead to some misleading conclusions. en este estudio, Se utilizó agua pesada y goma guar para configurar el material de relleno de fracturas., which did not invade matrix pores and did not produce detectable NMR signals. By testing the samples filled with this new material and comparing the measurement data of the unfilled samples, the NMR characteristics of the fractures can be obtained, which can be isolated and eliminated for the analysis of the fracture-to-hole-fracture two in the subsequent N2 and CO2 huff and puff experimental studies. Influence mechanism of fluid transport in metasystems.

Low-field NMR analysis experimental results shows:

  • Fractures will reduce the sweep efficiency of gas, que puede aliviarse parcialmente inyectando N2 en lugar de CO2, N2 can elastically support small pores, but the total recovery rate of pure N2 huff and puff is significantly lower than that of CO2.
  • Filling fractures will increase pore recovery.

Experimental equipment and methods

The NIUMAG low-field NMR core analysis system (medium size MRI analyzer) utilizado en este estudio se muestra en la Figura 1.

Medium size NMR analyzer (low-field NMR core analysis system)

Low-field NMR monitoring the process of gas injection huff and puff oil displacement.

  • Gas injection huff and puff experiments on saturated oil matrix samples (Polla, 2020a, 2020b).
  • The gas injection huff and puff experiment of fracturing samples, Método de división brasileño (BDM) to create fractures, and saturated oil to determine the total pore distribution after fracturing.
  • The gas injection huff and puff experiment of the filled fracture samples was carried out, and the crack filler was configured with heavy water and guar gum to determine the distribution and content of cracks.

The initial NMR T2 curves of the four samples are shown in Figure 2.

Higo. 2. T2 spectrum of saturated light oil samples before fracturing (J-1 and J-2 are taken from Jimsar Sag, J-3 and J-4 are taken from Xihu Sag)

Low-field NMR experiment results

1) Fracture distribution (low-field NMR analysis)

The complete T2 distribution of the fractured fractures was obtained through the guar gum filling experiment (the orange filled area of ​​the T2 spectrum, Cifra 3). Some large-sized fractures were newly added on the right side of the T2 spectrum, and the tiny fractures could extend to T2=1ms. Fracturing changes, the matrix pore structure (M0 frente a. G0), with varying matrix pore amplitudes and boundaries. Por lo tanto, clarifying the distribution of fractures and matrix pores is helpful to accurately evaluate the impact of fractures on fluid migration.

Cifra 3. Fracture T2 distribution (Q1 and Q2 are the boundaries between large, medium and small pores)

2) Pore increase before and after fracturing

The porosity change rate before and after fracture filling is calculated (Higo. 4). PVF (azul) reflects the improvement effect of fracturing on total porosity, y PVG (rojo) refleja la cantidad de poros de la matriz convertidos en fracturas. The effect of fracturing on the pore volume of rock samples with developed micropores (J-1 y J-2) es mas obvio, but the proportion of matrix pores converted into fractures is low. The macropore-developed rock samples (J-3 y J-4) have the opposite conclusion, the improvement effect of total pore volume is average, but the proportion of matrix pores converted into fractures is high. entre ellos, PVF is obtained by comparing the accumulated nuclear magnetic signal amounts of M0 and F0, and PVG is obtained by comparing the accumulated nuclear magnetic signal amounts of M0 and G0.

Cifra 4. Porosity change rate before and after fracture filling

3) The effect of fracture filling on flow (low-field NMR analysis)

Fracturing changes, the matrix pore structure, and the pore size classification method based on the original sample is no longer applicable here. en este papel, the textiles of fracture size are used to divide the pores into three categories: large, medium and small to calculate the pore occurrence (such as medium pores Q1)

Cifra 5. Gas injection huff and puff T2 spectrum of fractured rock sample (‘G6 N2-CO2’ is the sixth round of N2-CO2 huff and puff spectrum of fracture filling sample G0)

Taking the M0 recovery rate before fracturing as the base value, the incremental recovery rate Ru under the combination of fractures and gas is compared (Higo. 6). The effect of N2-CO2 injection in the matrix rock sample M0 is better than that of pure CO2 (gray, Polla, 2020a). Compared with the pure CO2 huff and puff mode, the effect of N2-CO2 injection in the fracturing samples is better in the micropore-developed rock samples (J-1 y J-2), but the effect is poor in the macropore-developed samples (J-3 and J-2). 4), which is presumed to be related to the elastic supporting effect of N2 molecules on the pores. Fractures store a large amount of gas, especialmente CO2, which weakens the kinetic energy of gas diffusion in the matrix pores and reduces total production (rojo). Fracture filling treatment can increase the sweep efficiency of the gas in the matrix pores and increase the recovery factor (azul). A corto plazo, fracturing will greatly increase production; sin embargo, the gas storage capacity of fractures will adversely affect long-term development.

Cifra 6. Incremental recovery in combined fracture filling and gas injection mode

Relevant literature (low-field NMR analysis):

1) Dong Xu, Shen Luyi*, Golsanami Naser, Liu Xue Feng, es julio, Wang Fei, shiying, Sun Jiangmeng. Cómo la inyección de N2 mejora la recuperación de hidrocarburos de CO2HnP: Un estudio de RMN sobre los mecanismos de desplazamiento de fluidos.. Combustible. 2020a. 278 :118286.

2) Dong Xu, Shen Luyi*, Liu Xue Feng, Zhang Pengyun, es julio, Yan Weichao, SunJianmeng. Caracterización por RMN de las estructuras porosas y la movilidad de fluidos de una arena compacta.: Una investigación experimental sobre el potencial EOR de CO2. Geología marina y petrolera. 2020b.118 :104460.

3) Liu Xue Feng, Xu Dong*, Golsanami Naser, Liu Bo, Shen Luyi W., Shi Ying, GuoZongguang. Caracterización por RMN de la movilidad de fluidos en arena apretada.: Analysis on the pore capillaries with the nine-grid model. Revista de ciencia e ingeniería del gas natural. 2021. 94.

 

 

Anteriormente:

Siguiente:

Dejar un mensaje